Download E-books Patterns for Parallel Programming PDF

By Timothy G. Mattson

The Parallel Programming advisor for Every software program Developer

From grids and clusters to next-generation online game consoles, parallel computing goes mainstream. options comparable to Hyper-Threading expertise, HyperTransport know-how, and multicore microprocessors from IBM, Intel, and solar are accelerating the movement's progress. just one factor is lacking: programmers with the talents to fulfill the hovering call for for parallel software program.

That's the place Patterns for Parallel Programming is available in. it is the first parallel programming consultant written in particular to serve operating software program builders, not only laptop scientists. The authors introduce a whole, hugely obtainable trend language that might aid any skilled developer "think parallel"-and begin writing potent parallel code shortly. rather than formal idea, they carry confirmed options to the demanding situations confronted by way of parallel programmers, and pragmatic suggestions for utilizing modern day parallel APIs within the genuine global. insurance contains:

  • Understanding the parallel computing panorama and the demanding situations confronted by way of parallel developers
  • Finding the concurrency in a software program layout challenge and decomposing it into concurrent tasks
  • Managing using facts throughout tasks
  • Creating an set of rules constitution that successfully exploits the concurrency you will have identified
  • Connecting your algorithmic constructions to the APIs had to enforce them
  • Specific software program constructs for imposing parallel programs
  • Working with latest top parallel programming environments: OpenMP, MPI, and Java

Patterns have helped millions of programmers grasp object-oriented improvement and different advanced programming applied sciences. With this e-book, you are going to research that they are tips on how to grasp parallel programming too.


Show description

Read or Download Patterns for Parallel Programming PDF

Similar Programming books

Working Effectively with Legacy Code

Get extra from your legacy platforms: extra functionality, performance, reliability, and manageability Is your code effortless to alter? are you able to get approximately immediate suggestions if you happen to do swap it? Do you realize it? If the reply to any of those questions is not any, you have got legacy code, and it truly is draining time and cash clear of your improvement efforts.

Clean Code: A Handbook of Agile Software Craftsmanship

Even undesirable code can functionality. but when code isn’t fresh, it could carry a improvement association to its knees. each year, numerous hours and critical assets are misplaced due to poorly written code. however it doesn’t must be that means. famous software program professional Robert C. Martin offers a innovative paradigm with fresh Code: A guide of Agile software program Craftsmanship .

Implementation Patterns

“Kent is a grasp at growing code that communicates good, is straightforward to appreciate, and is a excitement to learn. each bankruptcy of this e-book includes first-class motives and insights into the smaller yet vital judgements we regularly need to make while growing caliber code and sessions. ” –Erich Gamma, IBM individual Engineer   “Many groups have a grasp developer who makes a fast move of excellent judgements all day lengthy.

Agile Testing: A Practical Guide for Testers and Agile Teams

Te>Two of the industry’s so much skilled agile checking out practitioners and experts, Lisa Crispin and Janet Gregory, have teamed as much as deliver you the definitive solutions to those questions and so forth. In Agile checking out, Crispin and Gregory outline agile trying out and illustrate the tester’s function with examples from genuine agile groups.

Extra resources for Patterns for Parallel Programming

Show sample text content

We must also ensure that the data required for the update of each chunk is present when  needed. This problem is somewhat analogous to the problem of managing data dependencies  in the Task Parallelism pattern, and again the design must keep in mind the sometimes­ conflicting goals of simplicity, portability, scalability, and efficiency. answer Designs for problems that fit this pattern involve the following key elements: partitioning the global  data structure into substructures or "chunks" (the data decomposition), ensuring that each task has  access to all the data it needs to perform the update operation for its chunk (the exchange operation),  updating the chunks (the update operation), and mapping chunks to UEs in a way that gives good  performance (the data distribution and task schedule). information decomposition The granularity of the data decomposition has a significant impact on the efficiency of the program. In a coarse­grained decomposition, there are a smaller number of large chunks. This results in a  smaller number of large messages, which can greatly reduce communication overhead. A fine­grained  decomposition, on the other hand, results in a larger number of smaller chunks, in many cases leading  to many more chunks than PEs. This results in a larger number of smaller messages (and hence  increases communication overhead), but it greatly facilitates load balancing. Although it might be possible in some cases to mathematically derive an optimum granularity for the  data decomposition, programmers usually experiment with a range of chunk sizes to empirically  determine the best size for a given system. This depends, of course, on the computational performance  of the PEs and on the performance characteristics of the communication network. Therefore, the  program should be implemented so that the granularity is controlled by parameters that can be easily  changed at compile or runtime. The shape of the chunks can also affect the amount of communication needed between tasks. Often,  the data to share between tasks is limited to the boundaries of the chunks. In this case, the amount of  shared information scales with the surface area of the chunks. Because the computation scales with  the number of points within a chunk, it scales as the volume of the region. This surface­to­volume  effect can be exploited to maximize the ratio of computation to communication. Therefore, higher­ dimensional decompositions are usually preferred. For example, consider two different  decompositions of an N by N matrix into four chunks. In one case, we decompose the problem into  four column chunks of size N by N/4. In the second case, we decompose the problem into four square  chunks of size N/2 by N/2. For the column block decomposition, the surface area is 2N + 2(N/4) or  5N/2. For the square chunk case, the surface area is 4(N/2) or 2N. Hence, the total amount of data that  must be exchanged is less for the square chunk decomposition. In some cases, the preferred shape of the decomposition can be dictated by other concerns.

Rated 4.14 of 5 – based on 41 votes